Hamessing Radiation Pressure

Tal Carmon, Ph.D
Assistant Professor, Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI, USA

Abstract:
Dr. Tal Carmon will report on their recent experimental results in exciting mechanical modes from 50 MHz to 11 GHz in silica micro-spheres. The vibration is excited with light and is opening a new way to control optical devices. Applications of this technique include local oscillators and sensors.

Speaker's Biography:
Dr. Tal Carmon is an Assistant Professor at the Optics and Photonic center at the University of Michigan, Ann Arbor where he uses the pressure that light applies to control photonic-MEMS. He received his PhD from the Israel Institute of technology and is the recipient of the Air Force Young Investigator Award.

Registration online: http://www.ieee-sem.org/sectionregistration.html
Conference: 5:00 pm - 9:00 pm
Public Invited

The 2011 SEM Spring Conference will take place on:

April 7, 2011
(Registration: 5:00PM)
at: Fairlane Campus - U of M Dearborn

University of Michigan
School of Management
Fairlane Center North
19000 Hubbard Drive
Dearborn, MI 48126

TITLE:
Harnessing Radiation Pressure

PRESENTER:
Tal Carmon, Ph.D.
Assistant Professor, University of Michigan, Ann Arbor, MI, USA

ABSTRACT:
I will report on our recent experimental results in exciting mechanical modes from 50 MHz to 11 GHz in silica micro-spheres. The vibration is excited with light and is opening a new way to control optical devices. Applications include local oscillators and sensors.

BIO:
Dr. Tal Carmon is an Assistant Professor at the Optics and Photonic center at the University of Michigan, Ann Arbor where he uses the pressure that light applies to control photonic-MEMS. He received his PhD from the Israel Institute of technology and is the recipient of the Air Force Young Investigator Award.

PICTURE: